Central Angle Theorem

The Central Angle Theorem states:
The central angle drawn from any two points on a circle is twice as large as any inscribed angle drawn from those two points.

Explanation and proof:

Draw a circle, and label three points on it $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{P}. Also label the center of the circle \boldsymbol{O}.

The points can be anywhere you want, as long as \boldsymbol{P} is not one the same side as \boldsymbol{A} and \boldsymbol{B}.

Now construct the following line segments: $\overline{O A}, \overline{O B}, \overline{P A}$, and $\overline{P B}$

The angle $\angle A O B$ is a central angle, and the angle $\angle A P B$ is an inscribed angle.
Now construct the line segment $\overline{O P}$, and note that all radii have the same length.

Since $\triangle A O P$ and $\triangle A B P$ have two equal line segments, they are isosceles, and their base angles must be congruent. Label the congruent angles x and y.

The interior angles of a triangle must sum to 180°, so angles $\angle A O P$ and $\angle B O P$ must measure $180-2 x$ and $180-2 y$ respectively.

The sum of the angles around the origin must add up to 360°. Therefore,

$$
\angle A O B+180-2 x+180-2 y=360
$$

Subtracting 360 from both sides, we have

$$
\angle A O B=2 x+2 y
$$

Meanwhile, we can see from the above diagram that

$$
\angle A P B=x+y
$$

So we must conclude that $\angle A O B$ has twice the measure of $\angle A P B$.

$$
\angle A O B=2 \cdot \angle A P B
$$

Q.E.D.

Note: this theorem only applies if \boldsymbol{P} lies on the longer of the two arcs (the major arc) connecting \boldsymbol{A} and \boldsymbol{B}. If \boldsymbol{P} lies on the other arc (the major arc), then the equation becomes

$$
\angle A O B=360-2 \cdot \angle A P B
$$

This is why I earlier insisted that \boldsymbol{P} should be on the opposite side of \boldsymbol{A} and \boldsymbol{B}.

